两个重要极限公式

投稿:栀夏微凉 优质问答领域创作者 发布时间:2023-10-24 21:16:15
两个重要极限公式

第一个重要极限公式是:lim((sinx)/x)=1(x->0),

第二个重要极限公式是:lim(1+(1/x))^x=e(x→∞)。极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。

两个重要极限公式

1、第一个重要极限的公式:

lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。

特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。

2、第二个重要极限的公式:

lim (1+1/x) ^x = e(x→∞) 当 x → ∞ 时,(1+1/x)^x的极限等于e;或当 x → 0 时,(1+x)^(1/x)的极限等于e。

极限的求法

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。