偏导数的求法:当函数z=f(x,y) 在(x0,y0)的两个偏导数f'x(x0,y0) 与f'y(x0,y0)都存在时,我们称f(x,y) 在(x0,y0)处可导。如果函数f(x,y) 在域D的每一点均可导,那么称函数 f(x,y) 在域D可导。此时,对应于域D的每一点(x,y) ,必有一个对x (对y )的偏导数,因而在域D 确定了一个新的二元函数,称为f(x,y) 对x (对y)的偏导函数,简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的
求个偏导数
偏导数公式就是f'x=(x^2)'+2y *(x)'=2x+2y。
其实偏导数中的意义还是“无限小增量”;u/x还是微商,跟dy/dx的微商是一样的意义。偏导数是一个整体记号,不能看成一个微分的商。分母与分子是一个整体,不可以分开,与dy/dx不太一样。