是的,两个单调增函数之积仍然是增函数。这是因为如果两个函数都是单调增的,那么它们的乘积在相同的自变量上也会表现出相同的趋势。
具体来说,如果函数f(x)和g(x)都是单调增函数,那么对于任意的x1和x2,如果x1<x2,我们有f(x1) < f(x2)和g(x1) < g(x2)。
因此,它们的乘积f(x)g(x)也会满足x1时的值小于x2时的值,即f(x1)g(x1) < f(x2)g(x2),因此两个单调增函数之积是增函数。
两个单调增函数之积是增函数吗
两个单调增函数之积不一定是增函数
不一定只有二个函数均恒大于0时 才有此结论如果是二个函数均恒小于0时 则恰恰相反 其积是减函数
两个单调增函数之积是增函数吗
增函数的积不一定是增函数,如,两个一样的增函数y=x但它们的积y=x的平方却不是增函数。