1.有理数的乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数同0相乘,都得0.
2. 有理数的乘法法则的推广:
(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;
(2)几个数相乘,如果有一个因数为0,那么积就等于0.
3. 有理数的乘法运算律:
(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).
(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.
1、
2、
有理数的除法
1.倒数的意义: 乘积是1的两个数互为倒数.
2. 有理数除法法则:
法则一:除以一个不等于0的数,等于乘这个数的倒数,即.
法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
有理数乘除法则
有理数乘法法则即两数相乘,同号得正,异号得负,并把绝对值相乘。任何一个数与0相乘,积仍为0。2.乘积是1的两个数互为倒数。多个有理数相乘,几个不是0的数相乘负因数的个数是偶数时,积为正数,负因数的个数是奇数时,积为负数。
有理数除法(division of rational numbers)是有理数乘法的不完全逆运算,已知两个数的积与其中的一个因数,求另一个因数的运算,叫做除法。设a,b是两个有理数,且b≠0,a除以b就是要求一个数x,使得x·b=a,其中,x叫做a除以b所得的商,记作a÷b,a叫做被除数,b叫做除数。
有理数乘除法则
有理数域:加减乘除运算封闭,极限不封闭。
也就是,无穷个有理数的和得到结果不一定是有理数,可能是无理数。
举个极限的例子:
每一项都是有理数,但是收敛到无理数e。
有理数与无理数相加是无理数。