解:∵数列{an}的通项为an=2n+3n,则其前n项和Sn=2(1+2+…+n)+(3+32+…+3n)=2×n(n+1)2+3(3n−1)3−1=n2+n+32(3n-1).故答案为:n2+n+32(3n-1)