关于这个问题,椭圆的标准方程公式为:
$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$
其中,(h,k)为椭圆的中心点坐标,a和b分别为椭圆的长轴和短轴的长度。
椭圆标准方程公式
椭圆的一般方程公式有两种形式,分别是
Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
或
AX^2 + BY^2 + CXY + DX + EY + F = 0
其中A、B、C、D、E、F均为实数,且A、C不同时为0。这两种形式都可以表示椭圆的方程,但是一般式更加通用,可以表示任意方向的椭圆,而标准式则只能表示在x轴或y轴上的椭圆。
椭圆标准方程公式
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)