x^2+2 x- 4因式分解

投稿:清语暮歌 优质问答领域创作者 发布时间:2023-10-08 23:14:48
x^2+2 x- 4因式分解

要因式分解x^2 + 2x - 4,我们需要找到两个数,它们的和为2,乘积为-4。观察可知,这两个数是4和-1。因此,我们可以将原方程重写为(x + 4)(x - 1)。这就是x^2 + 2x - 4的因式分解形式。

x^2+2 x- 4因式分解

要将x^2 + 2x - 4因式分解,我们可以尝试使用因式分解法或配方法。
首先,我们可以用因式分解法尝试:
x^2 + 2x - 4 = (x + ___)(x - ___)
首先,我们找两个数的乘积等于4,并且它们的和等于2。我们可以尝试2和2:
x^2 + 2x - 4 = (x + 2)(x - 2)
然而,这个分解并不能使方程式成立,所以我们需要使用配方法。
使用配方法,我们将方程式x^2 + 2x - 4重新组织:
x^2 + 2x - 4 = (x^2 + 2x + ___) - ___
我们需要填充空白以使方程式能够完全配对。我们需要一个数字填充第一个空白,使得(x^2 + 2x + 这个数)可以因式分解为一个平方形式。同样,我们需要填入一个数字填充第二个空白,使得- 这个数和- 4可以完全配对。
我们可以观察方程式x^2 + 2x + ___,它看起来像一个完全平方 - 可以写为(x + ___)^2。通过观察,我们知道这个平方是(x + 1)^2。所以我们填充第一个空白为1。
现在,我们需要找到一个数字填充第二个空白。通过观察方程式- 1 - 4,我们可以看出- 1 - 4可以写为- (2^2)。所以我们填充第二个空白为- 2^2。
现在,我们可以把方程式重新写成完整配对形式:
x^2 + 2x - 4 = (x + 1)^2 - 1 - 4
= (x + 1)^2 - 5
所以最终因式分解为 x^2 + 2x - 4 = (x + 1)^2 - 5。

x^2+2 x- 4因式分解

:x^2-2x-4 =x²-2x+1-5 =(x-1)²-﹙√5﹚² =(x-1+√5)(x-1-√5)。