这是一个比较常见的数学问题,它表示为 $a^a + 5^b = m$,其中 $a$ 和 $b$ 是未知数,$m$ 是已知的常数。
这个方程可以用指数运算法则化简为 $a^a \cdot 5^b = 5^m$。
由于 $a^a \cdot 5^b = 5^m$,两边同时取对数,得到 $\log a + \log 5 = \log 5^m$。
根据对数的定义,$\log a + \log 5 = \log (a \cdot 5)$。
所以,$a \cdot 5 = 5^m$。
两边同时除以 $5$,得到 $a = 5^m$。
因此,答案为 $a = 5^m$。
2的a次方加5的b次方等于m
2的a次方等于m,则a等于log2m,5的b次方等于m,b等于log5m,画出2的a次方和5的b次方的图像,可以看出ab的值以及m整体的情况